CBSE Board Class XII Chemistry – Set 3 Board Paper - 2012

Time allowed: 3 hours Maximum Marks: 70

General instructions:

- 1. All questions are compulsory.
- 2. Marks for each question are indicated against it.
- 3. Question numbers 1 to 8 are very short- answer questions carrying 1 mark each. Answer these in one word or about one sentence each.
- 4. Question numbers 9 to 18 are short-answer questions, carrying 2 marks each. Answer these in about 30 words each.
- Question numbers 19 to 27 are short answer questions, carrying 3 marks each. Answer these in about 40 words each.
- Question numbers 28 to 30 are long answer questions of carrying 5 marks each.Answer these in about 70 words each.
- 7. Use Log Tables, if necessary. Use of calculators is not permitted.

Questions:

Q. 1 What is meant by 'doping' in a semiconductor?

[1]

Q. 2 What is the role of graphite in the electrometallurgy of aluminium?

[1]

Q. 3 PH₃, and H₂S which is more acidic and why?

[1]

Q. 4 Give the IUPAC name of the following compound.

[1]

$$CH_2 - C - CH_2 Br$$

$$CH_3$$

Q. 5 Draw the structure of hex-1-en-3-ol compound.

[1]

Q. 6 Define the term, homopolymerisation giving an example.

[1]

Q. 7 Arrange the following in the decreasing order of their basic strength in aqueous solutions:

[1]

CH₃ NH₂, (CH₃)₂ NH, (CH₃)₃ N and NH₃

Q. 8 Arrange the following compounds in an increasing order of the reactivity in nucleophillic addition reactions: ethanol, propanal, propanone, butanone.

[1]

Q. 9 A 1.00 molal aqueous solution of trichloroacetic acid (CCl ₃ COOH) is heated to its boiling point. The solution has the boiling point of 100.18 °C. Determine the van't	
Hoff factor for trichloroacetic acid. (K_b for water = 0.512 K kg mol ⁻¹)	
OR	
Define the following terms: (i) Mole fraction (ii) Isotonic solutions (iii) Van't Hoff factor (iv) Ideal solution	[2]
Q. 10 Name the two groups into which phenomenon of catalysis can be divided. Given an example of each group with the chemical equation involved.	ı [2]
Q. 11 What do you understand by the 'order of a reaction'? Identify the reaction order free each of the following units of reaction rate constant:	om [2]
(i) L-1 mol s-1 (ii) L mol ¹ s-1	[2]
(ii) Ellioi 3	
Q. 12 Explain the following terms giving one example for each: (i) Micelles	[2]
(ii) Aerosol	
 Q. 13 Explain the following giving an appropriate reason in each case. (i) O₂ and F₂ both stabilize higher oxidation states of metals but O₂ exceeds F₂ in doing so. 	
(ii) Structures of Xenon fluorides cannot be explained by Valence Bond approach.	[2]
Q. 14 Describe the principle involved in each of the following processes.(i) Mond process for refining of Nickel.	
(ii) Column Chromatography for purification of rare elements.	[2]
Q. 15 What is meant by (i) peptide linkage (ii) biocatalysts?	[2]
Q. 16 (i) $Cr_2O_7^{2^-} + H^+ + I^- \rightarrow$	
$(ii)MnO_4^- + NO_2 + H^+ \rightarrow$	[2]
Q. 17 Draw the structure of the monomer for each of the following polymers:(i) Nylon 6(ii) Polypropene	[2]

- Q. 18 Write any two reactions of glucose which cannot be explained by the open chain structure of glucose molecule.
 [2]
- Q. 19 Tungsten crystallizes in body centered cubic unit cell. If the edge of the unit cell is 316.5pm, what is the radius of tungsten atom?

OR

Iron has a body centered cubic unit cell with a cell dimension of 286.65 pm. The [3] density of iron is 7.874 g cm⁻³. Use this information to calculate Avogadro's number. (At. Mass of Fe = 55.845μ)

- **Q. 20** 150 g of an unknown molecular material was dissolved in 450g of water. The resulting solution was found to freeze at -0.64 $^{\circ}$ c. What is the molar mass of this material? (K_f for water =1.86 gmol⁻¹) [3]
- Q. 21 For the reaction

 $2NO_{(g)}+CI_{2(g)}\rightarrow 2NOCI_{(g)}$

The following data were collected. All the measurements were taken at 263 K:

Experiment No	Initial [NO] (M)	Initial [CI ₂] (M)	Initial rate of disappearance
			of CI ₂ (M/min)
1	0.15	0.15	0.60
2	0.15	0.30	1.20
3	0.30	0.15	2.40
4	0.25	0.25	?

(a) Write the expression for rate law.

[3]

- (b) Calculate the value of rate constant and specify its units.
- (c) What is the initial rate of disappearance of CI, in exp. 4?
- **Q. 22** Explain the following observations giving an appropriate reason for each.

[3]

- (i) The enthalpies of atomization of transition elements are quite high.
- (ii) There occurs much more frequent metal-metal bonding in compounds of heavy transition metals (i.e. 3rd series).
- (iii)Mn2+ is much more resistant than Fe2+ towards oxidation.
- Q. 23 Write the name, the structure and the magnetic behavior of each one of the following complexes:
 [3]
 - (i) [Pt (NH₃) CI (NO₂)]
 - (ii) [Co(NH₃)₄CI₂] CI
 - (iii)Ni (CO)4

(At. Nos. Co = 27, Ni = 28, Pt = 78)

- Q. 24 Write chemical equations for the following conversions:
 - (i) Nitrobenzene to benzoic acid.
 - (ii) Benzyl chloride to 2-phenylethanamine.
 - (iii) Aniline to benzyl alcohol.
- Q. 25 Although chlorine is an electron withdrawing group, yet it is ortho-, para- directing in electrophilic aromatic substitution reaction. Explain why it is so?
- Q. 26 Draw the structure and name the product formed if the following alcohols are oxidised. Assume that an excess of oxidizing agent is used.
 - (i) CH₃CH₂CH₂CH₂OH
 - (ii) 2-butenol
 - (iii)2-methyl-1- propanol
- Q. 27 Explain the following terms giving one example of each type:

[3]

[3]

- Antacids,
- (ii) Disinfectants,
- (iii) Enzymes.
- **Q. 28** (a) What type of a battery is the lead storage battery? Write the anode and the cathode reactions and the overall reaction occurring in a lead storage battery when current is drawn from it.
 - (b) In the button cell, widely used in watches, the following reaction taken place

$$Zn_{(s)} + Ag_2O_{(s)} + H_2O_{(i)} \rightarrow Zn_{(aq)}^{2+} + 2Ag_{(s)} + 2OH_{(aq)}^{-}$$

Determine E^0 and Δ G^o for the reaction.

(given:
$$E_{Ag^*/Ag}^{\circ}$$
 =+0.8 V, $E_{Zn^{2*}Zn}^{\circ}$ =-0.76V) [5]

OR

- (a) Define molar conductivity of a solution and explain how molar conductivity changes with change In concentration of solution for a weak and a strong electrolyte.
- (b) The resistance of a conductivity cell containing 0.001 M KCI solution at 298 K is 1500 Ω . What is the cell constant if the conductivity of 0.001 M KCI solution at 298 K is 0.146 x 10-3 S cm-1?
- Q.29 (a) Illustrate the following name reactions giving suitable example in each case:
 - (i) Clemmenson reduction
 - (ii) Hell-volhard-Zelinsky reaction
 - (b) How are the following conversions carried out?
 - (i) Ethylcyanide to ethanoic acid
 - (ii) Butan-1-ol to butanoic acid
 - (iii) Benzoic acid to m-bromobenzoic acid

- Q.29 (a) Illustrate the following reactions given a suitable example for each.
 - (i) Cross aldol condensation
 - (ii) Decarboxylation
 - (b) Given simple tests to distinguish between the following pairs of compounds
 - (i) Pentan-2-one and Pentan-3-one
 - (ii) Benzaldehyde and Acetophenone
 - (iii) Phenol and Benzoic acid
- Q. 30 (a) Draw the molecular structures of following compounds:
 - (i) XeF₆
 - (ii) H₂S₂O₈
 - (b) Explain the following observations:
 - The molecules NH₃ and NF₃ have dipole moments which are of opposite direction.
 - (ii) All the bonds in PCl₅ molecule are not equivalent.
 - (iii) Sulphur in vapor state exhibits paramagnetism.

OR

- (a) Complete the following chemical equations:
- (i) $XeF_4 + SbF_5 \rightarrow$
- (ii) $CI_2 + F_2$ (excess) \rightarrow
- (b) Explain each the following:
- (i) Nitrogen is much less reactive than phosphorus.
- (ii) The stability of +5 oxidation state decreases down group 15.
- (iii) The bond angles (0 N 0) are not of the same value in NO2+ and NO2-