MATHEMATICS

SECTION A

Question 1 [10×3]

(i) If (A-2I)(A-3I)=0, where $A=\begin{pmatrix} 4 & 2 \\ -1 & x \end{pmatrix}$ and $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, find the value of x.

(ii) Find the value(s) of k so that the line 2x + y + k = 0 may touch the hyperbola $3x^2 - y^2 = 3$.

(iii) Prove that: $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\sin^{-1}\frac{4}{5}$

(iv) Using L'Hospital's Rule, evaluate:

$$\lim_{x\to 0} \left(\frac{e^x - e^{-x} - 2x}{x - \sin x} \right)$$

(v) Evaluate: $\int \frac{1}{x + \sqrt{x}} dx$

(vi) Evaluate: $\int_{0}^{1} log \left(\frac{1}{x} - 1\right) dx$

(vii) Two regression lines are represented by 4x + 10y = 9 and 6x + 3y = 4.
Find the line of regression of y on x.

(viii) If 1, w and w^2 are the cube roots of unity, evaluate $(1 - w^4 + w^8) (1 - w^8 + w^{16})$

(ix) Solve the differential equation:

$$log\left(\frac{dy}{dx}\right) = 2x - 3y$$

(x) If two balls are drawn from a bag containing three red balls and four blue balls, find the probability that:

(a) They are of the same colour.

(b) They are of different colours.

$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ y+z & z+x & x+y \end{vmatrix} = (x-y)(y-z)(z-x)(x+y+z)$$

(b) Find A⁻¹, where
$$A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$$
 [5]

[5]

Hence, solve the following system of linear equations:

$$4x + 2y + 3z = 2$$
$$x + y + z = 1$$
$$3x + y - 2z = 5$$

Question 3

(a) Solve for x:
$$\sin^{-1} x + \sin^{-1} (1-x) = \cos^{-1} x$$
 [5]

(b) Construct a circuit diagram for the following Boolean Function: [5]
 (BC+A)(A'B'+C') + A'B'C'
 Using laws of Boolean Algebra, simplify the function and draw the simplified circuit.

Question 4

- (a) Verify Lagrange's Mean Value Theorem for the function $f(x) = \sqrt{x^2 x}$ in the interval [5] [1, 4].
- (b) From the following information, find the equation of the Hyperbola and the equation of its Transverse Axis:
 Focus: (-2, 1), Directrix: 2x 3y + 1 = 0, e = 2/√3

Question 5

(a) If
$$y = (\cot^{-1} x)^2$$
, show that $(1 + x^2)^2 \frac{d^2 y}{dx^2} + 2x(1 + x^2) \frac{dy}{dx} = 2$ [5]

(b) Find the maximum volume of the cylinder which can be inscribed in a sphere of radius [5] $3\sqrt{3}$ cm. (Leave the answer in terms of π)

Question 6

(a) Evaluate:
$$\int \frac{\cos^{-1} x}{x^2} dx$$
 [5]

(b) Find the area bounded by the curve y = 2x - x², and the line y = x.
[5]

(a) Find the Karl Pearson's co-efficient of correlation between x and y for the following [5] data:

	x	16	18	21	20	22	26	27	15
ľ	у	22	25	24	26	25	30	33	14

(b) The following table shows the mean and standard deviation of the marks of Mathematics [5] and Physics scored by the students in a school:

	Mathematics	Physics			
Mean	84	81			
Standard Deviation	7	4			

The correlation co-efficient between the given marks is 0-86. Estimate the likely marks in Physics if the marks in Mathematics are 92.

Question 8

(a) Bag A contains three red and four white balls; bag B contains two red and three white balls. If one ball is drawn from bag A and two balls from bag B, find the probability that:

One ball is red and two balls are white;

(ii) All the three balls are of the same colour.

(b) Three persons, Aman, Bipin and Mohan attempt a Mathematics problem [5] independently. The odds in favour of Aman and Mohan solving the problem are 3:2 and 4:1 respectively and the odds against Bipin solving the problem are 2:1. Find:

The probability that all the three will solve the problem.

(ii) The probability that problem will be solved.

Question 9

(a) Find the locus of the complex number z = x + iy, satisfying relations $\arg(z - 1) = \frac{\pi}{4}$ [5] and |z - 2 - 3i| = 2. Illustrate the locus on the Argand plane.

(b) Solve the following differential equation: [5] $ye^y dx = (y^3 + 2xe^y) dy$, given that x = 0, y = 1.

SECTION B

Question 10

(a) If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, then show that $|\vec{a} - \vec{b}| = 2 \sin \frac{\theta}{2}.$

(b) Find the value of λ for which the four points A, B, C, D with position vectors [5] -ĵ-k; 4î+5ĵ+λk; 3î+9ĵ+4k and -4î+4ĵ+4k are coplanar.

- (a) Find the equation of a line passing through the point (-1, 3, -2) and perpendicular to the lines: $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$.
- (b) Find the equations of planes parallel to the plane 2x 4y + 4z = 7 and which are at a [5] distance of five units from the point (3, -1, 2).

Question 12

- (a) If the sum and the product of the mean and variance of a Binomial Distribution are 1-8 and 0-8 respectively, find the probability distribution and the probability of at least one
- (b) For A, B and C, the chances of being selected as the manager of a firm are 4:1:2, respectively. The probabilities for them to introduce a radical change in the marketing strategy are 0.3, 0.8 and 0.5 respectively. If a change takes place; find the probability that it is due to the appointment of B.

SECTION C

Question 13

- (a) If Mr. Nirav deposits ₹250 at the beginning of each month in an account that pays an interest of 6% per annum compounded monthly, how many months will be required for the deposit to amount to at least ₹6,390?
- (b) A mill owner buys two types of machines A and B for his mill. Machine A occupies 1000 sqm of area and requires 12 men to operate it; while machine B occupies 1200 sqm of area and requires 8 men to operate it. The owner has 7600 sqm of area available and 72 men to operate the machines. If machine A produces 50 units and machine B produces 40 units daily, how many machines of each type should he buy to maximise the daily output? Use Linear Programming to find the solution.

Question 14

- (a) A bill of ₹60,000 was drawn on 1st April 2011 at 4 months and discounted for ₹58,560 at a bank. If the rate of interest was 12% per annum, on what date was the bill discounted?
- (b) A company produces a commodity with ₹24,000 fixed cost. The variable cost is estimated to be 25% of the total revenue recovered on selling the product at a rate of ₹8 per unit. Find the following:
 - Cost function
 - (ii) Revenue function
 - (iii) Breakeven point.

(a) The price index for the following data for the year 2011 taking 2001 as the base year was [5] 127. The simple average of price relatives method was used. Find the value of x:

Items	A	В	С	D	Е	F
Price (₹ per unit) in year 2001	80	70	50	20	18	25
Price (₹per unit) in year 2011	100	87-50	61	22	x	32-50

(b) The profits of a paper bag manufacturing company (in lakhs of rupees) during each month [5] of a year are:

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Profit	1.2	0-8	1.4	1.6	2.0	2-4	3.6	4.8	3-4	1.8	0-8	1.2

Plot the given data on a graph sheet. Calculate the four monthly moving averages and plot these on the same graph sheet.